
APS105 Lecture 16
7.1, 7.2 without putchar/getchar, 7.3 strlen

Dan Zingaro

March 3, 2010



Feedback from Reading Quiz

I “When is [the NULL character] present and when is it not?”
I It is present whenever we create a string

I “If a string is char friend[], does the first character of the
string start from friend[1] rather than friend[0]?”

I No. A string is an array, so it starts at index 0

I char a[3] = {’D’, ’A’, ’n’, ’\0’};
I Is this a string?



Creating Strings

I String: array of characters that ends with the special
character ’\0’

I Without the ’\0’, we would not be able to detect the end of
the string

I So, to store a string of length n, we use an array of at least
size n+1

I One way to create a string:

char name[4];

name[0] = ’d’;

name[1] = ’a’;

name[2] = ’n’;

name[3] = ’\0’;



Creating Strings...

Instead of specifying each character, we can initialize an array with
a string. C automatically adds the ’\0’:

char name[] = "Dan";

We can also specify an array size:

char name[10] = "dan";

I C adds seven ’\0’ characters after the three characters in the
string



String Constants

We can also create string constants, and refer to them through
char pointers.

char *name2 = "joe";

I Again, C adds the ’\0’ terminator to the end of the string

I We can still obtain characters of the string (e.g. name2[1])

I But we are not allowed to change the characters in the string

name2[2] = ’t’; //No!



ConcepTest
Fill in the comment with the correct code.

char s[50];

char *t = "abc";

//make s the string "abc"

I A.
s = "abc";

I B.
s = t;

I C.
s[0] = t[0];

s[1] = t[1];

s[2] = t[2];

I D.
s[0] = t[0];

s[1] = t[1];

s[2] = t[2];

s[3] = t[3];

I E. A or B



Writing Strings

I printf can be used to write a string, with the %s placeholder

char s[] = "hi";

printf ("The string is: %s\n", s);



Reading Strings

I scanf can be used to read strings, with a %s placeholder

I scanf skips leading whitespace, then begins storing the
characters it reads

I scanf adds the ’\0’ terminator

char t[10];

scanf ("%s", t);



Reading Strings...

I We generally do not use this form of scanf to read strings,
for two reasons

I Problem 1: scanf stops reading when it gets a whitespace
character, so it will read only the first word into the string

I Solution: use gets; it reads until a newline, but does not store
the newline in the string

I gets stores any leading whitespace in the string
I gets adds the ’\0’ terminator

char t[10];

gets (t);



Reading Strings...

I Problem 2: nothing stops the user from entering more
characters than can be stored in the string

I This will overwrite other data and cause undefined program
behavior

I Solution: use fgets; it takes a parameter indicating the
maximum length of the string to store

I The array should have at least this number of elements

#define T_LENGTH 10;

char t[T_LENGTH];

fgets (t, T_LENGTH, stdin);

I fgets stops reading when it hits a newline, or when it reads
T_LENGTH - 1 characters

I If fgets reads a newline, it stores it in the string

I fgets adds a ’\0’ terminator



ConcepTest

Assume that the user types abc defg, but that only abc is stored
in the string s. Which of the following could have been used to
read the string?

I A. scanf ("%s", s);

I B. gets (s);

I C. fgets (s, 3, stdin);



Length of a String

size_t strlen (const char *s)

I strlen is a function that returns the length of a string

I Length of a string: number of characters that are found prior
to the first ’\0’ character

char greet[10] = "hi";

int i = strlen (greet) //stores 2



ConcepTest

What is the result of this code?

char s[] = "hi\0hey";

I A. The three characters ’h’, ’i’, ’\0’ are stored in s;
strlen (s) == 2

I B. The seven characters
’h’, ’i’, ’\0’, ’h’, ’e’, ’y’, ’\0’ are stored in s;
strlen (s) == 2

I C. The seven characters
’h’, ’i’, ’\0’, ’h’, ’e’, ’y’, ’\0’ are stored in s;
strlen (s) == 6

I D. Error!


